Normed combinatorial homology and noncommutative tori (*)

نویسنده

  • Marco Grandis
چکیده

Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. By this additional information, cubical sets can provide a sort of 'noncommutative topology', agreeing with some results of noncommutative geometry but lacking the metric aspects of C*-algebras. Here, we make such similarity stricter by introducing normed cubical sets and their normed directed homology, formed of normed preordered abelian groups. The normed cubical sets NCθ associated with 'irrational' rotations have thus the same classification up to isomorphism as the well-known irrational rotation C*-algebras Aθ. MSC: 55U10, 81R60, 55Nxx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORMED COMBINATORIAL HOMOLOGY AND NONCOMMUTATIVE TORI Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. By this additional information, cubical sets can provide a sort of ‘noncommutative topology’, agreeing with some results of noncommutative geometry but lacking the metric aspects of C∗-algebras. Here, we make such similarity stri...

متن کامل

Directed combinatorial homology and noncommutative geometry

We will present a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topo...

متن کامل

Directed Combinatorial Homology and Noncommutative Tori ( * ) (the Breaking of Symmetries in Algebraic Topology)

This is a brief study of the homology of cubical sets, with two main purposes. First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered abelian groups where the positive cone comes from the structural cubes. But cubical sets can also express topological ...

متن کامل

Homology for higher-rank graphs and twisted C*-algebras

We introduce a homology theory for k-graphs and explore its fundamental properties. We establish connections with algebraic topology by showing that the homology of a k-graph coincides with the homology of its topological realisation as described by Kaliszewski et al. We exhibit combinatorial versions of a number of standard topological constructions, and show that they are compatible, from a h...

متن کامل

The Noncommutative Geometry of the Discrete Heisenberg Group

Motivated by the search for new examples of “noncommutative manifolds”, we study the noncommutative geometry of the group C*-algebra of the three dimensional discrete Heisenberg group. We present a unified treatment of the K-homology, cyclic cohomology and derivations of this algebra. 1. The discrete Heisenberg group Recently, there has been considerable interest in the notion of a “noncommutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003